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Fractional Gaussian noise �fGn� is an important and widely used self-similar process, which is mainly
parametrized by its Hurst exponent �H�. Many researchers have proposed methods for estimating the Hurst
exponent of fGn. In this paper we put forward a modified periodogram method for estimating the Hurst
exponent based on a refined approximation of the spectral density function. Generalizing the spectral exponent
from a linear function to a piecewise polynomial, we obtained a closer approximation of the fGn’s spectral
density function. This procedure is significant because it reduced the bias in the estimation of H. Furthermore,
the averaging technique that we used markedly reduced the variance of estimates. We also considered the
asymptotical unbiasedness of the method and derived the upper bound of its variance and confidence interval.
Monte Carlo simulations showed that the proposed estimator was superior to a wavelet maximum likelihood
estimator in terms of mean-squared error and was comparable to Whittle’s estimator. In addition, a real data set
of Nile river minima was employed to evaluate the efficiency of our proposed method. These tests confirmed
that our proposed method was computationally simpler and faster than Whittle’s estimator.
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I. INTRODUCTION

Methods that utilize the characteristics of self-similar pro-
cesses can effectively model many natural observations.
Self-similarity implies that an object looks similar to its
zoomed part and has been exploited in many scientific fields,
such as geophysics �1,2�, traffic flow �3�, textures �4,5�, bi-
ology �6,7�, and functional brain signals �8,9�. The relevance
of the self-similar property derives from its ability to capture
the inner nature of data without introducing artificial and
cumbersome models. Among the emerging self-similar mod-
els �e.g., �10,11�� are two frequently studied processes, i.e.,
fractional Gaussian noise �fGn� process and the fractional
autoregressive integrated moving average �FARIMA� pro-
cess. We will confine our attention to fGn, yet almost all the
following parameter estimators could apply to either fGn or
FARIMA.

Only two parameters, the Hurst exponent �H� and vari-
ance, completely specify fGn. Of these, H is the primary
parameter. �We will return to a further and more detailed
consideration of fGn in Sec. II.� Many articles have proposed
methods for estimating the Hurst exponent �H� of fGn. As
suggested by Jeong et al. �12�, the classical methods for es-
timating H of fGn fall logically into three domains. The first
is in the time domain, which includes the aggregated vari-
ance method �13�, Higuchi’s method �14�, the rescaled range
statistics method �15�, and the detrended fluctuation analysis
method �6�. The second is in the frequency domain and in-
cludes the periodogram method �16�, the modified peri-
odogram method �13�, and Whittle’s estimator �11,17�. The
third domain is in the wavelet domain, which includes Wor-
nell’s estimator �18�, an estimator based on discrete varia-
tions of fractional Brownian motion �fBm� �19–21�, the

wavelet maximum likelihood �WML� estimator �22�, and the
Abry-Veitch Daubechies wavelet-based estimator �23�.

In the past few years, various researchers introduced sev-
eral new estimators, including the wavelet transform modu-
lus maxima estimator �24�, an estimator based on the sample
autocorrelation function �25�, and a bias-corrected version of
the rescaled range statistics estimator �26�. In the present
study, we put forward a modified periodogram method for
estimating the Hurst exponent. As expected, the proposed
method resulted in less bias than did the original peri-
odogram method. Monte Carlo simulation results showed
that the proposed estimator is reasonably good at estimating
the Hurst exponent of fGns. Moreover, its numerical com-
plexity is low because it is computationally simple.

The paper is organized as follows. Section II contains a
brief description of fGn. In Sec. III, we introduce the tradi-
tional periodogram method and consider a few modified ver-
sions. Then we propose our modified periodogram method in
Sec. IV. We provide Monte Carlo simulation results in Sec.
V. A real data set of Nile river minima is used as an illustra-
tive example to validate the estimators in Sec. VI. Finally,
we end with a discussion and conclusions.

II. FRACTIONAL GAUSSIAN NOISE

fGn G= �Gt : t=1,2 , . . . ,N� is a zero mean stationary pro-
cess, which is defined as the stationary increment of frac-
tional Brownian motion �27�. The Hurst exponent H
� �0,1� and variance �2

ªVar�Gt� fully characterize fGn.
The distribution of fGn can be completely specified by its
autocovariances at lags ��Z �11�,

c��� ª
�2

2
��� + 1�2H − 2���2H + �� − 1�2H� . �1�

The Hurst exponent is a measure of the strength of depen-
dence between the discrete time points Gt, whereas the vari-*Corresponding author; jiangtz@nlpr.ia.ac.cn
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ance is only a scale parameter. Equation �1� reveals that fGn
is white Gaussian noise when H=0.5. A Hurst exponent H
� �0,0.5� means that fGn is negatively correlated or antiper-
sistent, whereas H� �0.5,1� means that it is positively cor-
related or has a long memory �11�. The spectral density func-
tion �SDF� of fGn is precisely defined as the Fourier
transform of its autocovariance sequence, that is,

S�f� ª �
�=−�

�

c���e−i2�f� �2�

=4�2CH�sin2��f�� �
j=−�

�
1

�f + j�2H+1 , −
1

2
� f �

1

2
, �3�

with CHª��2H+1�sin��H� / �2��2H+1 �11,28�.

III. PERIDODOGRAM METHOD

Using a Taylor expansion to Eq. �3�, we obtain �11�

S�f� � �2CH�2��2�f �1−2H, −
1

2
� f �

1

2
�4�

in the neighborhood of the origin, and hence SDF is related
to frequency by a power law with spectral exponent

� = 1 − 2H, − 1 � � � 1, �5�

i.e.,

S�f� 	 �f �� �6�

or, equivalently,

ln S�f� 	 � ln�f � . �7�

The approximate linear relationship between ln S�f� and ln�f �
can be fitted using a least-squares estimate �LSE�. Then the
slope of the regression line is an estimate of the spectral
exponent which can be converted to the estimated H by Eq.
�5�. As a result, the procedure, based on a logarithmic peri-
odogram, is called the periodogram method �16�. In practice,
the linear regression is restricted around the origin in the
frequency domain and only the low-frequency part of
O�N4/5� �N is the length of the time series� of the frequency
range should be employed �29�.

The periodogram method is a simple and quick estimator.
It has received extensive attention, including, for example,
the proof of consistency and asymptotic normality for a
modified periodogram method provided by Robinson �30�,
the mean-squared error �MSE� of the periodogram method
studied by Hurvich et al. �29�, and the bias testing by David-
son and Sibbertsen �31� However, some previous studies in-
dicate that the periodogram method leads to a poor estimate
of H, especially when the time series length is short
�13,20,32�. Flandrin showed that continuous fGn yields a
well-defined power spectrum which exactly obeys a power
law over all frequencies �33�. However, this does not hold
for discrete fGn �for convenience we continue to use the term
“fGn” to represent a discrete fGn in this study� �34�. Numer-
ous variants of the periodogram method have been proposed.

Shimotsu and Phillips advocated a pooled periodogram re-
gression estimator to allow the use of a larger number of
periodogram ordinates to reduce the variance without signifi-
cantly changing the bias �35�, Andrews and Guggenberger
included polynomial terms in the frequencies in the narrow-
band regression �36�, and Moulines and Soulier developed a
broadband regression with dummy variables alone control-
ling for the short-run effects �37�. Each of these three meth-
ods is based more or less on the approximation of SDF given
in Eq. �4�, which will be confined in the linear form of the
spectral exponent. As a result, these methods may not per-
form satisfactorily for short time series. This is why the
narrow-band regression of the periodogram method is con-
strained in the neighborhood of zero. When the logarithmic
periodogram is performed over the entire range of the fre-
quency domain, it is referred to as a broadband regression
�37�. We will propose a quite different modified periodogram
method of broadband regression in the following section.

IV. MODIFIED PERIODOGRAM METHOD

Given a time series X= �X0 ,X1 , . . . ,XN−1� of length N, a
basic estimate of SDF is provided by the periodogram,

ŜN
�p��f� =

1

N
��

t=0

N−1

Xte
−i2�ft�2

. �8�

The expected value of the periodogram, E�ŜN
�p��, is given by

Percival and Walden as �38�

E�ŜN
�p��f�� =

�2

2N
�

j=−N+1

N−1

��j − 1�2H − 2�j�2H + �j + 1�2H�


cos�2�f j��N − �j�� . �9�

The estimated spectrum above is an asymptotically unbiased
estimator of S�f� �38�. Thus, for any particular frequency, f ,

let SN
�p��f�=E�ŜN

�p��f��, with

lim
N→�

SN
�p��f� = S�f� . �10�

So in practice we have to substitute SN
�p��f� for S�f�. In

order to refine the poor approximation that results from Eq.
�4�, we assumed the exponent to be some function of H, that
is,

SN
�p��f� 	 �f ���H�. �11�

Similar to Eq. �7�, we have,

ln SN
�p��f� 	 ��H�ln�f � . �12�

For practical applications, we need to smooth the esti-

mated SDF to reduce the variance. Let ŜN
�p��f� be the esti-

mated SDF and its smoothed version, ŜN,A
�p� �f�. To be consis-

tent with ŜN,A
�p� �f�, we performed the same smoothing

procedure on SN
�p��f� and thus got SN,A

�p� �f� �see Fig. 1�. After
that, we let H vary in the interval �0,1�; then we used the
LSE of ln SN,A

�p� �f� versus ln�f � in Eq. �12� to obtain �. Since �
is independently related to both H and the data length �N�,
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we denoted it as �N,H. The relationship is shown in Fig. 2.
Then, we performed a polynomial fitting of �N,H and H. It is
natural to deal with H�0.5 and H�0.5 separately because
they have quite different properties. In the following simula-
tions, we considered different order polynomials and found
little difference in efficiency when the order was greater than
or equal to 3. In particular, a seventh-order polynomial can
provide a good fit empirically. Let PL�H�=�i=0

7 ciH
i and

PR�H�=�i=0
7 diH

i be the piecewise fitted polynomial. Then we
have

�N,H � 	PL�H� , H � 0.5

PR�H� , H 
 0.5.

 �13�

Note that in practical applications the frequencies �f� are
discrete. Without a loss of generality, we assumed a sampling

rate equal to 1. Using the direct periodogram method, we

then obtained the estimated SDF as ŜN
�p��f i�, f i= i /N, where

−N /2� i�N /2−1. We restricted our study to real-valued

time series, so that ŜN
�p��f i� is symmetrical. Thus, we only

have to consider the last half, i.e., ŜN
�p��f i� �with i

=1, . . . ,N /2−1�.
Therefore, the modified H estimation procedures can be

fully specified as follows:
Step 1. Let H vary by small increments over the interval

�0,1� and then use LSE to calculate �, i.e., �N,H, with the
given data length N, that is,

��N,H,cN,H� = arg min
��,c�

�
i=1

N/2−1

�ln SN,A
�p� �f i� − � ln�f �i − c�2,

�14�

where f i= i /N and c is a constant.
Step 2. Find the piecewise polynomial fitting of �N,H and

H in Eq. �14�, i.e., ��H�.
Step 3. Estimate the SDF of the given time series Xt �0

� t�N−1� via the direct periodogram method, i.e., ŜN
�p��f i�

�1� i�N /2−1�.
Step 4. Get the smoothed version ŜN,A

�p� �f i� by averaging the

estimated SDF ŜN
�p��f i�.

Step 5. Perform a linear regression fitting of ln ŜN,A
�p� �f i�

versus ln�f i�. The slope K and intercept C are given by

�K,C� = arg min
�k,c�

�
i=1

N/2−1

�ln ŜN,A
�p� �f i� − k ln�f i� − c�2. �15�

Step 6. In the end, a proper Ĥ in the interval �0,1�, which
is the estimate of the Hurst exponent of Xt, can be found as
the solution to the equation PL�H�=K �or PR�H�=K� by a
dichotomous search method.

According to Eq. �14�, �N,H is the optimal � from the
perspective of LSE, which certainly refines the approxima-
tion of the SDF compared with the original approximated
version in Eq. �6�. The piecewise polynomial ��H� is a gen-
eralization of the linear function ��=1−2H�. However, in
steps 1 and 2, the accuracy of ��H� is related to the size of
the increments of H in the interval �0,1�. The smaller the
increment, the greater the accuracy of ��H� that can be ob-
tained. On the other hand, the smaller the increment, the
longer the computing time needed. Hence, a compromise
must be made between accuracy and computing time. We
chose an increment of 0.01 in the simulation.

Note that ��H� is a modified version of the linear function
�=1−2H, and it is a monotonously decreasing function of H

�Fig. 2�. This will ensure only one proper Ĥ will be found in
step 6.

It is not difficult to see that, for the same data length N,
��H� only has to be calculated once �steps 1 and 2 above� for
either simulated or actual data. Hence, the proposed method
is appropriate for the analysis of large samples of fGns that
have the same data length. It is commonly known that a fast
Fourier transform requires only O�N ln N� operations and

FIG. 1. �Color online� Plots of SN,A
�p� �f� versus f . SN,A

�p� �f� is
smoothed version of the expectation shown in Eq. �9�, i.e., SN

�p��f�.
The shape of SN,A

�p� �f� varies with H. We set �2=1, N=600 �only a
few H values are shown for simplicity�.

FIG. 2. �Color online� The relationship between �N,H, N, and H.
Data length N is from 27 to 212. The Hurst exponent H varies from
0 to 1 with increments of 0.01. Blue dots indicate values of �N,H

with different N and H �only half of dots are drawn for viewing�.
Dashed red curves are fitted polynomial �PL�H�� when H�0.5.
Solid green curves are the fitted polynomial �PR�H�� when H
�0.5.
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that the dichotomous search method demands O�ln N� opera-
tions. Thereby our algorithm has a numerical complexity on
the order of O�N ln N�.

Theoretically, let xi=ln�f i� and x̄= �1 / �N /2
−1���i=1

N/2−1ln�f i�, from Eq. �15�, we have

�̂�H� = K =

�
i=1

N/2−1

ln ŜN,A
�p� �f i��xi − x̄�

�
i=1

N/2−1

�xi − x̄�2

=

�
i=1

N/2−1

�ln SN,A
�p� �f i� + ln�ŜN,A

�p� �f i�/SN,A
�p� �f i��
�xi − x̄�

�
i=1

N/2−1

�xi − x̄�2

.

�16�

For simplicity, we will consider the estimate without smooth-

ing. In this situation, we let �̂1�H� and Ĥ1 instead of �̂�H�
and Ĥ, respectively. The expression of �̂1�H� is given as
follows:

�̂1�H� =

�
i=1

N/2−1

�ln SN
�p��f i� + ln�ŜN

�p��f i�/SN
�p��f i��
�xi − x̄�

�
i=1

N/2−1

�xi − x̄�2

.

�17�

E�ln ŜN
�p��f i�� is not equal to ln E�ŜN

�p��f i�� because of the
known the properties of expectation. From the work of
Geweke and Porter-Hudak �16�, we know that when f ap-

proaches zero, the term ln�ŜN
�p��f� /S�f�
 is asymptotically in-

dependent and identically distributed �i.i.d.� and its
asymptotic mean is −� �� is Euler’s constant 0.577 21. . .�
and its variance is �2 /6. It would be not too difficult to
extend the results to the whole frequency domain for the

terms ln�ŜN
�p��f� /SN

�p��f�
 since the equation E�ŜN
�p��f��

=SN
�p��f� holds for arbitrary N and f . Then we could derive

E��̂1�H����1�H� and Var��̂1�H����2 /3N from Eq. �16�.
Therefore, the estimate Ĥ1 is asymptotically unbiased. More-
over, taking advantage of the simple linear approximate re-
lationship of ��H� and H, i.e., ��H��1−2H, the estimate

Ĥ1’s variance is approximately equal to �2 /12N. Further-
more, we found experimentally that the distribution of the

terms ln�ŜN
�p��f� /SN

�p��f�
 is approximately normal; so, conve-

niently, we can assume that the estimate Ĥ1 obeys the normal

distribution, i.e., Ĥ1�N�H ,�2 /12N�. We can obtain its con-
fidence intervals �H− �� /�12N�Z�/2 ,H+ �� /�12N�Z�/2�
�where 1−� is the confidence level and Z�/2 is the 1−� /2
quantile of a standard normal distribution�. Similarly, we can

deduce the statistical results of �̂�H� and Ĥ; that is, the esti-

mated Ĥ is also asymptotically unbiased and yields an
asymptotic i.i.d. sample. However, due to the smoothing pro-

cedure, we find that, if Var��̂�H���Var��̂1�H��, then

Var�Ĥ��Var�Ĥ1�. The confidence intervals of the estimate

Ĥ would also be smaller than the estimated Ĥ1. These results
will be verified in the later simulations.

V. MONTE CARLO SIMULATIONS

In this section, we present the results of Monte Carlo
simulations using simulated data to cross validate the modi-
fied periodogram estimator �MPE� by comparison with the
original periodogram estimator �PE� and three other com-
monly used estimators: Whittle’s estimator �17�, the WML,
estimator �22,39� and an estimator which is based on discrete
variations of the fBm �19–21,40�. Each of these estimators is
described in greater detail in the Appendix.

A. Simulated data

Several algorithms �11,41�, which have been compara-
tively evaluated �20�, are available to simulate fGn. We
adopted the Wood-Chan method, initially proposed by
Davies and Harte �42� and improved later by Wood and Chan
�43�, to generate the fGn simulations because it has been
established as being exact and fast �20�.

First, we performed an estimation of the simulated data,
each of which consisted of 1000 fGns of various lengths
�N=600,400,200� and with different values of H �H
=0.1,0.2, . . . ,0.9�. Then we produced 1000 simulations of
fGns for each H �only H=0.3,0.5,0.7 are considered here
for the sake of brevity� with lengths varying from N=27 to
N=212 to test how errors of estimates varied with increasing
data length. For simplicity, we set �2=1 for all simulations
since � is only a scale parameter.

B. Results

The results are summarized in Figs. 3 and 4. Specifically,
Fig. 3 presents the results of the estimators in the form of
box plots, which summarize the deviation of the estimated H
from the nominal values for the estimators �only the results
of N=600 are presented for the sake of brevity�. Figure 4
gives a detailed description of the abilities of the estimators
for estimating fGns of different values of H or various data
lengths. Efficiency is quantified in terms of the root-mean-
squared error �RMSE� �i.e., �variance+bias2� between the
nominal and the estimated H.

Comparative evaluation of the deviation of MPE and PE
from the nominal values is shown in the first two boxes in
each panel of Fig. 3. The corresponding RMSE is shown in
Fig. 4 �the top row of the first column�. It is clear that PE is
a fairly rough estimator and is only acceptable near H=0.5
�Fig. 3�. PE seems to be greatly underestimated when H
�0.5 and overestimated when H�0.5 �Fig. 3�. MPE makes
a definite improvement; not only does the median of the
estimated H agree with the nominal H, but also the variance
is smaller, especially when estimating extreme values of H
�Fig. 3�. From box plots in Fig. 3 and RMSE in Fig. 4 �where
the bottom row is a close-up of the first row without PE�, we
found that all methods except PE are reasonably good esti-
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mators of H when H=0.1–0.9. However, the WML estima-
tor was biased toward overestimation when H�0.5. Addi-
tionally, the fBm-based estimator suffers from a large
variance. As a result, in terms of RMSE, Whittle’s estimator
showed the best performance of the four estimators, and the
next best was MPE.

Note that an important issue in studying fGn is the length
of the time series that is needed to produce an estimate of
acceptable precision. To investigate this, we examined the
estimators’ standard deviation �SD� and RMSE at different
lengths of the time series, i.e., from N=27 to N=212. We
produced 1000 simulations of fGn for each H �only H
=0.3,0.5,0.7 are considered here for the sake of brevity� and
evaluated the Hurst exponent for each time series. The re-
sults are depicted in Fig. 5, which reflects the estimators’
performance for fGns of different lengths.

We found that the SD and RMSE of the estimators all
decreased generally as the data length increased. In particu-
lar, for N
4096, all the estimators have largely equivalent
performance in terms of MSE �see RMSE shown in the right
column of Fig. 5�, which also suggests that the proposed
estimator is reasonably good.

In order to verify the theoretical derivation in Sec. IV, we
compared the approximate theoretical SD and confidence in-
tervals with the Monte Carlo counterparts from the simulated
data �the same data used in Fig. 5� with and without smooth-
ing �the confidence level was chosen as 0.95� �Fig. 6�. Both
the Monte Carlo SD and confidence intervals of the MPE

estimate with smoothing �Ĥ� are obviously smaller than the

MPE estimate without smoothing �Ĥ1�; this finding validates

the advantage of the smoothing procedure in estimation.
Note that the approximate SD and confidence intervals
�dashed blue lines� behave less efficiently than the Monte
Carlo mainly because of the simple linear relationship be-
tween ��H� and H that was adopted in the theoretical deri-
vation in Sec. IV. However, the approximate results without
smoothing supply the upper bounds of the MPE estimate’s
variance and confidence intervals �Fig. 6�. The precise SD

FIG. 4. �Color online� RMSE in estimates of the Hurst exponent
according to the estimators involved. Left column: data length N
=600; middle column: data length N=400; right column: data
length N=200. Top row: RMSE of five estimators when the H value
is from 0.1 to 0.9 in increments of 0.1; bottom row: a close-up of
the low values of RMSE showed in the top row with PE omitted.
Point marker codes for estimator: MPE ���, PE �� �, Whittle ���,
WMNL ���, and fBm ���.

FIG. 5. �Color online� SD and RMSE of all estimators. For
different H’s, SDs, and RMSEs both decrease consistently as data
length increases. We produced 1000 simulations using the Wood
and Chan algorithm for each H. Point markers code for the estima-
tors: MPE ���, PE �� �, Whittle ���, WML ���, and fBm ���.

FIG. 3. �Color online� Comparative evaluation of bias and effi-
ciency of five estimators of the Hurst exponent H of fGn with N
=600. Box plots in each panel summarize the deviation of the esti-
mated H from the nominal values for the estimators. The variance
of all simulations was set at �2=1. �Estimators� 1: MPE; 2: PE; 3:
Whittle; 4: WML; 5: fBm.
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and confidence intervals should be investigated in future
studies.

VI. ILLUSTRATIVE EXAMPLE

We applied the estimators to Nile river minima which
were recorded as the yearly minimum water level in the Nile
river from 662 to 1284 A.D. �11,44� �Fig. 7�. These data are
available from �45�. This data set played a key role in the
discovery of long-range dependence in hydrological data by
Hurst �46�. Statistical modeling of this time series was first

done as an fGn in the doctoral works of Mohr �47� and Graf
�48�. Graf reported estimates of H between 0.83 and 0.85
�48�. Using an approximate maximum likelihood estimate,
Beran reported estimates of H=0.84 for fGn with a 95%
confidence interval of 0.79–0.89 �11�. He also established a
goodness-of-fit test for the spectral density function of a long
memory process and showed that fGn appears to fit the spec-
tral density function of the Nile river series well.

The results are displayed in Table I. Obviously, comparing
our results with the above analyses by Graf and Beran indi-
cates that the performance of our proposed method is second
only to Whittle’s estimator and outperforms the other two
estimators �Table I�.

VII. DISCUSSION

Wavelet analysis is widely used in estimating the param-
eters of fGn primarily because of its multiresolution nature
and its adaptability to local features in the data. Because the
data length is always finite, a boundary effect �49� and an
optimal scale range �40� always exist. If only optimal scales
are used in the estimation process, as with the fBm-based
estimator, the variance will increase. When all the scales are
employed, the process may introduce bias into the estima-
tion, as occurs with the WML estimator.

Whittle’s estimator enjoys the same asymptotic properties
as the exact MLE. According to the simulation studies in
�12,13,50�, Whittle’s estimator is among the best estimators.
Indeed, it also showed the best performance in this study
�Figs. 3–5�. However, the minimization procedure it employs
requires many repetitive calculations, leading to a signifi-
cantly higher overall cost than the other estimators.

In our proposed modified periodogram estimator, we gen-
eralized the approximation of SDF from a simple linear form
�1−2H� to a piecewise polynomial form ���H��, which im-
proved the previously poor approximations from the perspec-
tive of LSE. Moreover, the averaging procedure decreased
the variance of the estimates. As a result, our modified peri-
odogram performed much better than the original peri-
odogram method.

Our simulations also suggest that it outperforms the popu-
lar WML estimator in terms of MSE and is comparable to
Whittle’s estimator. In addition, it is computationally simple
and has a low numerical complexity. Consequently, it is
much faster than Whittle’s estimator.

The real data of Nile river minima were used to validate
the estimators. Whittle’s estimator gave the best performance

FIG. 6. �Color online� The SD and confidence intervals of the-
oretical calculation and Monte Carlo simulations on fGn’s with dif-

ferent data lengths and H values. Ĥ and Ĥ1 denote the MPE esti-
mate with and without smoothing, respectively. Left column:

dashed blue lines indicate the approximate theoretical SD of Ĥ1;

dotted black lines indicate the Monte Carlo SD of Ĥ1; solid red

lines indicate the Monte Carlo SD of Ĥ. Right column: dashed blue
lines indicate the approximate theoretical confidence intervals of

Ĥ1; dotted black lines indicate the Monte Carlo confidence intervals

of Ĥ1; solid red lines indicate the Monte Carlo confidence intervals

of Ĥ. The confidence level was chosen as 0.95.

FIG. 7. �Color online� Nile river minimum water levels for 622–
1284 A.D.

TABLE I. Estimators of H for Nile river minima.

Estimator Ĥ

MPE 0.85

PE 0.90

Whittle 0.84

WML 0.82

fBm 0.80
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and the next was our proposed method, which was coinci-
dent with the results of simulations in Sec. V.

VIII. CONCLUSION

Based on the periodogram method, we proposed a modi-
fied estimator for the Hurst exponent of fGn in this study.
The improved approximation of SDF from the perspective of
LSE markedly reduced the bias. Moreover, the averaging
procedure introduced significantly reduced the variance of
the estimates. Thus, it yielded a rapid and efficient estimate
of H in fGn with 0�H�1.
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APPENDIX: THREE OTHER ESTIMATORS

1. Whittle’s estimator

The likelihood function of the fGn G= �G1 , . . . ,GN�T, with
covariance � matrix depending on an unknown parameter
vector �ª �H ,�2�� �0,1�
R+, is

L�G;�� ª �2��−N/2������−1/2e−�1/2�GT�−1���G, �A1�

where ������ denotes the determinant of the matrix ����. The
maximum likelihood estimator �MLE� of � is obtained by
maximizing the logarithmic-likelihood function

LL�G;�� ª ln L�G;�� = −
N

2
ln�2�� −

1

2
ln������

−
1

2
GT�−1���G . �A2�

The exact MLE is quite time consuming and unstable for
practical estimations. An alternative approximating version
to the MLE was proposed by Whittle �17� �see also
�11,20,51��. The key idea is that ln������ is approximated by
N�−1/2

1/2 ln S�f�df and GT�−1���G is approximated by

N�−1/2
1/2 �Ŝ�p��f� /S�f��df in Eq. �A2�.

2. WML estimator

Using wavelet decomposition on the fGn, G, we have the
following likelihood function:

L�G;�� ª �2��−N/2��̃����−1/2e−�1/2�Gw
T �̃−1���Gw, �A3�

where � is defined as above, Gw
ª �a−J,1 ,d−J,1 , . . . ,d−1,1 , . . . ,d−1,2J−1�T, is the coefficients of
the wavelet transform and J is the maximum level decompo-

sition of the signal according to some wavelet. �̃��� is the
covariance matrix of Gw, which is almost diagonal and can
be approximated by the diagonal matrix �22�. A Daubechies
wavelet with four vanishing moments �db4� is often used.

3. Estimator based on discrete variations of the fBm

As previously noted, an fGn process can be regarded as
an incremental process of an fBm. Equally, if G
= �G1 , . . . ,GN� is a finite sample of a fGn with the Hurst
exponent, the variable B= �B1 , . . . ,BN�,

Bt = �
l=1

t

Gl. �A4�

The convergence of the kth absolute moment of discrete
variations is defined by

SN�k,a� =
1

N − l
�
i=l

N−1

�Va�i/N��k �k � 0� . �A5�

The parameter a denotes a filter of length l+1 and with an
order, p
1, verifying �q=0

l aqqr=0; for r=0, . . . , p−1, Va is
derived as follows:

Va� i

N
� = �

q=0

l

aqB� i − q

N
�, ∀ i � �l, . . . ,N − 1
 .

�A6�

Assume M to be the upper bound of the scale used in the
estimation and the sequence of filters �am�1�m�M are defined
by

ai
m = 	aj , if i = jm

0, otherwise.

 for i = 0, . . . ,ml + 1 �A7�

One immediately sees that

E„SN�k,am�… = mHkE„SN�k,a�… . �A8�

By estimating E�SN�k ,am�� by SN�k ,am�, an estimator of
H can be deduced from a simple linear regression of
�ln SN�k ,am�
1�m�M on �k ln m
1�m�M �for more details, see
Refs. �19–21,40��. In particular, a Daubechies wavelet with
four vanishing moments �db4� is usually chosen as the filter
a and M is set to 5 empirically �40�.
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